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Stable and efficient implicit and expligit fractional-step methods
for solving three-dimensional, time-dependent Maxwell equations
have been successfully developed. These numerical procedures are
characteristic-based schemes with the intrinsically accurate no-
reflection wave condition on the boundaries of truncated computa-
tional domain. Excellent simulations for electromagnetic phenom-
ena have been achieved for a three-dimensional wave guide and
an oscillating electric dipole. @ 1995 Academic Press, Inc.

I. INTRODUCTION

Recent progress in computational electromagnetics has cre-
ated a new frontier for research in plasmadynamics, optical
pulses, and electromagnetic wave propagation, as well as the
interface between classical electrodynamics and quantum me-
chanics [1, 2]. In this scientific endeavor, efforts are required
to numerically solve the time dependent Maxwell equations for
propagating and scattering electromagnetic waves [2-5]. The
system of partial differential equations to be solved is hyper-
bolic and constitutes an initial-value problem [6]. For all finite-
difference or finite-volume approximations of the Maxwell
equations, a fundamental difficulty arises from the necessity of
imposing boundary values on a truncated computational domain
to an initial-value system. These artificial boundaries will in-
duce wave reflections. In addition to degrading the accuracy
of interacting wave patterns, the reflecting waves from the
artificial boundaries also contribute to erroneous accumulations
of radiating energy. The distortion of energy content leads to
unrealistic modulations of the amplitude of wave motion [5].
Despite numerous attempts to alleviate this difficulty, approxi-
mated boundary conditions are still inherently limited as applied
to the total field. Only the compatibility conditions which are
derived from the characteristics can completely eliminate the
spurious wave reftection at the truncated spatial domain [3, 4,
6-8].

Another urgent need in computational electromagnetics is
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the improvement of numerical efficiency. For wave propagation
phenomena, the numerical resolution of wave motions is dic-
tated by the minimum wave number within the frequency spec-
trum. In order to provide adequate numerical resolution for
frequency ranges beyond the Rayleigh into the resonance and
optical regimes, the required number of discretized data nodes
is enormous [1, 2, 5]. In radar cross section computation of
acrospace vehicles, a desirable predictive dynamic range can
be as high as 60 dB over broad angular ranges [1]. The stringent
requirement of computational electromagnetics can be met only
by low reflection coefficient radiation boundary conditions and
a very efficient numerical algorithm. The aggregated conse-
quence is that large amounts of data usually must be processed
by a conditionally stable numerical algorithm which limits our
capability in this area of scientific endeavor. A possible alterna-
tive may be derived from the characteristic-based numerical
schemes developed to solve the Euler equations in computa-
tional fluid dynamics [9, 10]. In a previous effort, three charac-
teristic-based algorithms were devised for solving the time-
domain Maxwell equations [3, 4]. Not only is the numerical
stability constraint removed from the solving scheme, the per-
fect shift condition [11] is also achieved in one-dimensional
space by both explicit and implicit methods. At the Courant
numbers of one and two, solutions of a simple wave generated
by the numerical method are devoid of any aliasing numerical
errors on a uniformly spaced mesh system.

The fundamental idea of the characteristic-based methods,
either the flux vector splitting or flux difference splitting [9,
10], for solving hyperbolic equation systems is derived from
eigenvalue analysis. In numerical analysis, the well-posedness
requirement and the stability of a discretized system are ulti-
mately linked to eigenvalues of governing equations. Therefore,
characteristic-based schemes have shown a drastic improve-
ment to numerical stability and accuracy by using a windward
difference formulation to solve the initial value problems [9,
10]. In short, the solving procedure is developed to mimic the
wave mechanism of information propagation [10]. However,
the characteristic-based algorithm also has an inherent limita-
tion in that the coefficient matrices of the governing equations,
when written in flux vector form, can be diagonalized in only
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one dimension at a time. In previous efforts [3, 4], all multidi-
mensional equations are split into multiple one-dimensional
formulations and solved by alternating direction implicit (ADI)
schemes [12—14]. This general approach has been successfully
applied to solve two-dimensional time-domain Maxwell equa-
tions [4]. However, its extension to three-dimensional applica-
tions has been proven to be inefficient due to the rather restric-
tive numerical stability property of the ADI algorithm for
solving the three-dimensional, time-dependent Maxwell equa-
tions [3].

The present effort sustains the pursuit in developing an effi-
cient characteristic-based algorithm for solving three-dimen-
sional Maxwell equations in time domain. A major point of
departure from the earlier efforts is focused on the manner in
which the multidimensional calculations were carried out. In
essence, the ADI scheme {3, 4, 15] is replaced by the fractional-
step or the splitting approximation [16, 17]. The splitting
scheme has provided a superior stability property than that of
ADI to the hyperbolic system, It is known that the spatially
central ADI formulation of hyperbolic systems is uncondition-
ally unstable [18, 19]. The numerical stability can be improved
by using a windward difference, but the stability constraint is
still too limited for efficient applications [4]. The splitting
scheme is closely related to, in some cases identical with, the
ADI methods [11, 14]. The main difference lies in the treatment
of the off-diagonal difference operators. The fractional-step
method retains only the diagonal difference operator in the
numerical sweep directions. Consequently, for any scalar equa-
tion, the amplification factor is simply the product of the ampli-
fication factors of the one-dimensional equations [14, 16, 17].
Once the stability restriction is removed, the present investiga-
tion will be focused on the issues of numerical accuracy and
no-reflection numerical boundary conditions.

1I. ANALYSIS

I1.1. Basic Formulation

The relevant time-dependent Maxwell equations for electro-
magnetic field in free space [20] can be written in the form:

SeH) L ywp=0 1)
ot

@—an’:—i (2)
t

The system of equations expressed in vector form on a Cartesian
frame are

3

where the coefficient matrices (Jacobian of flux vector) A, B,
and C are
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where e and w are the electric permittivity and magnetic perme-
ability which relate the electric flux density to the electric field
intensity and the magnetic flux density to the magnetic field
intensity, respectively.

The eigenvalues of the coefficient matrices A, B, and C are
identical, but they contain multiplicities. Despite that, linearly
independent eigenvectors can still be found [3, 4]. The matrix
A (or B or C) may be independently diagonalized by a straight-
forward matrix multiplication,

Diag(\)} = {\/L_g, \/L_S, - \/L_S, — —ﬁ, 0, 0} (N
D, = S;IAS, (10}
D, = S;'BS, (1)
D, = §7CS,, (12)

where § is a nonsingular similar matrix constructed by the
eigenvectors as the column vector and $™' is its left-hand in-
verse. ldentical procedures are also performed to the coefficient
matrix of other coordinates of the Cartesian frame. Similar
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matrices associated with each of the coefficient matrices A, B,
and C are given by
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where the ratio V /e is referred to as the intrinsic impedence
of the medium [20].

For the present investigation and without loss of generality,
the propagating waves are confined in isotropic media separated
by a physical interface. Under these conditions, the permittivity
and permeability are assigned constant values [3, 4, 20]. Thus,
the left-hand inverse of the similarity transformation matrix §'
can be brought into the differentiation with respect to both time
and space. The resulting equations are completely uncoupled
from each other [3, 4]. These independent and scalar equations
describe the invariant characteristic variables along trajectories
with slopes defined by their associated eigenvalues. Since one-
dimensional characteristic equations are completely uncoupled,
the systemn of equations can be solved individually. The wind-
ward differencing approximation decomposes the matrix sys-
tem into upper and lower tridiagonal structures, according to
the sign of the eigenvalue. Only a single numerical sweep is
required to solve the complete discretized equations system. For
an implicit solving scheme, the costly pentadiagonal inversion
procedure becomes unnecessary and leads to a very efficient
numerical procedure.
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All one-dimensional characteristic variables in each coordi-
nate can be given as
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Therefore in each coordinate direction, the time-dependent,
three-dimensional Maxwell equations are uncoupled into six
independent scalar equations according to their associated ei-
genvalues, Forn = 1, 2, ..., 6,

aWw,, W,
L ~+ XA, =0 (19)
ar ax
ow,, IW,,
——= 4 A, —=0 20
L, Py Ay oy (20)
aw,, aw,,
L;: =+ A, =0 21)
ot oz

From the sign of the eigenvalue, the stencil of second-order
accurate windward difference approximation can be easily con-
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structed to form the one-dimensicnal difference operators, if
A <<0,

aw —3Wo + 4Wiyju — Wi e
ax 2Ax ’ @2)
if A >0,
aw _ 3Wi,j,k - 4W|‘wl,j,k + Wi
ax 2Ax ’ (23)

11.2. Accuracy of Time Integration

The three-dimensicnal system is solved by the fractional-
step or time splitting scheme as previously mentioned [14, 16,
17]. In its most elementary form, the fractional-step method is
given as

Wrt=Fr L LLLLW" (24)

The symmetric and cyclic sequence of one-dimensional opera-
tors is designed to retain the second-order accuracy in space
and time [14, 16, 17]. The one-dimensional characteristics W,,
W,, and W, are distinct in different coordinates. Therefore,
during the cyclic computing sequence, a dependent variable
transformation was performed to convert the characteristics
from one temporal-spatial plane to the other. The relationship
between the three sets of characteristics is explicit and can be
given as

W, = S7'S,W, = S;'S.W, @5)
W, = S,1S.W, = 5;'S.W, (26)
W, = S;'SW, = ST'S,W,. 27

Nevertheless the system of one-dimensional characteristic
equations (19), (20), and (21} is identical to

aU aly
L. =
ot +a ax =0 (28
vy Bﬁ =10 (29)
’ 6! dy
al
L;,—+ C— =0 30)
at a9z

The temporal second-order accurate approximations of these
one-dimensional difference operators are derived from the Tay-
lor series expansion in time,
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Equation (24) is identical to the fractional step formulation
applied to the electric and magnetic field intensities U,

Ut=LLLLLLU" (34)

Tt is more advantageous to demonstrate the numerical accuracy
of the present method using Eq. (34). This basic formulation
eliminates tedious algebraic manipulations of the characteristics
between coordinates.

The gist of the fractional-step or the time splitting scheme
can be viewed as a temporal integration procedure, in that the
time advancement of a solution is an accumulative process by
adding the contributions from the split terms consecutively.
The individual fractional steps only provide a partial approxi-
mation to the equation. Only after a complete symmetric and
cyclic sequence, the approximation will yield a second-order
method in time. The specifics follow:
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‘The above numerical approximation to Eq. (3) and the equiv-
alence to Eq. (24) vields the identical expression to that of a

{40)
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straightforward Taylor series expansion up to the order of Af,
The second-order spatial approximation was adopted for the
present purpose, as shown by Eqgs. (22) and (23). Therefore,
the present method for solving the Maxwell equations will
produce the second-order accurate approximation in time and
space after the symmetric and cyclic operator sequence.

Since one-dimensional characteristics of the Maxwell equa-
tions are completely uncoupled from each other and appear in
scalar form, the one-dimensional Riemann formulation is exact
(Eqgs. (19), (20), and (21)). However, the most important feature
of the present numerical procedure is that the costly matrix
inversion for implicit formulation becomes unnecessary. Using
windward discretization, the difference in computational effort
between implicit and explicit procedures diminishes. Both use
the forward or backward substitution to advance the solution
to the next time level. Three numerical procedures have been
developed. Two codes are based on the implicit and explicit
fractional-step scheme. The third procedure is the unsplit ex-
plicit version which closely resembles conventional applica-
tions [2].

The fractional-step algorithm is best described in terms of a
succession of approximate solutions in each spatial dimension,
Under quite general circumstances, the numerical procedure
is unconditionally stable if all one-dimensional differencing
operators possess this feature [16, 17]. Since the property of
upwind model wave equations are well established by Warming
and Beam [11, 15], the details will not be reported here. Like
all approximate factored methods for solving multidimensional
problems, there is ambiguity in describing intermediate tempo-
ral data in the cyclic solving sequence [11, 14-17]. The issues
of well-posedness [21, 22] and physically meaningful temporal
data [3, 4] at the intermediate time steps will be further studied.

113, The Imposed Conditions at Truncated Boundaries

In the present analysis, the finite differencing is implemented
to honor the physical orientation of wave motion. In general,
information is propagated from the interior/exterior of the com-
putational demain to the boundary along the characteristics,
The characteristic equations are really the compatibility rela-
tionships and are equally applicable on the boundaries of the
computational domain [3, 4, 6, 22]. Therefore, in order to
eliminate the interior wave reflection from the truncated compu-
tational demain, only the null value of incoming characteristic
variables from far field need to be specified on the numerical
boundaries:

Wx,n=0: x<Qandx>1 (41)
W,,=0, y<Oandy>1 (42)
W,,=0, z<O0andz>1. (43)

This boundary condition is well-posed and exact when the
characteristic variable is aligned with the wave motion. For
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electromagnetic wave propagation, the direction is always
known to be perpendicular to both the electric and magnetic
fields. However, in the present investigation, the coordinate
transformation has not been implemented. Therefore, the exact
no-reflection boundary condition will be degenerated to an
approximation when the wave motion is not aligned with the
Cartesian frame.

III. NUMERICAL PROCEDURE

Numerical simulations of the present investigation are per-
formed in a truncated computational domain defined by a cube.
All spatial variables X, ¥, and Z have the same range of zero
to unity. The temporal variation is therefore scaled by the wave
speed and spatial dimension through the CFL number, AA#/
Ax. For the temporally and spatially second-order accurate
scheme, the formal truncation error will have an order of magni-
tude of 1 X 107* for a mesh spacing around 2.

As a validation of numerical procedure, the electromagnetic
wave propagation within a three-dimensional rectangular wave
guide and a radiating field of an oscillating electric dipole were
simulated. All numerical results were generated on an IRIS
4D/440VGS workstation. On mesh systems of 45 X 45 X 45
or 46 X 46 X 46, the implicit and the explicit fractional-step,
as well as the unsplit explicit procedure, yielded a consistent
data processing rate of 2.71 X 107 s, 2.93 X 107* s, and
3.35 X 107 s, respectively. Using a standard compiler option,
the two fractional-step methods attained a parallel efficiency
about 0.75, operating on four nodes. Timing information of the
unsplit explicit method in parallel computing was not collected.

The implicit fractional-step method has an unlimited theoreti-
cal stability limit. However, at a CFL value greater than five,
the dispersive numerical error became pronounced over a wide
range of wave numbers for all problems investigated. On the
other hand, the upper stability bound of the explicit fractional-
step method was sustained at a CFL number of two. At CFL
numbers of unity and two, the perfect shift condition of numeri-
cal solution by the explicit method is achieved at certain condi-
tions. Under this circumstance, the upwind procedure is at least
fourth-order accurate in space when supported by a uniform
mesh system. The unsplit explicit method has the most restricted
stability constraint; the CFL number used during the present
analysis was consistently less than the maximal value of 2/3.

Since all wave motions were studied under periodic condi-
tions, the property of temporal accuracy can be verified easily by
examining the periodicity of wave propagation. A characteristic
time scale is defined by the time elapse for an electromagnetic
pulse to travel through the computational domain. All numerical
results are capable of duplicating the periodic identity within
the truncation error O(107%). This accuracy was retained for
the oscillating electric dipole even after 690 time steps. The
time interval corresponds to the physical situation that 30 waves
had been generated and passed through the computational do-
main. Based on this fact, all numerical results to be presented in
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FIG. 1. Magnetic field of a 3D wave guide: CFL = 1.0; Tch = 1.4}
A=B=ma=_127

the following discussions are randomly selected instantaneous
values of a dynamic event.

IV. DISCUSSION OF NUMERICAL RESULTS

IV.1. Electromagnetic Wave within a Three-Dimensional
Wave Guide

The wave motion confined within a three-dimensicnal rectan-
gular wave guide was first simulated. For this phenomenon,
the closed form solution of time-dependent Maxwell equations
is known [20, 23]. The 3D electromagnetic wave is specified
to propagate along the Z coordinate, thus all the componenis of
electric and magnetic intensities contain a common sinusoidal
function of time and Z. In a degenerated two-dimensional set-
ting, this problem is commonly designated as the TE, | trans-
verse electric wave [20, 23]. The initial and boundary conditions
were prescribed as follows: The incoming incident wave was
completely specified at computational boundary for each time
step. The exact characteristic-based no-refiection condition was
imposed at the exit plane Z = 1, Eq. (24). In order to focus
attention on the validation of numerical methods and the charac-
teristic-based no-reflection condition, all boundary values on
the cross section planes were over-specified from the ana-
Iytic sotution.

In Figs. 1 and 2, the perspective views of the entire magnetic
and electric field are presented, respectively. The magnetic field
exhibits a complex three-dimensional structure. The magnetic
lines on the wave guide surfaces coincide with the exact solution
of TE,, wave. The electric field appears as a collection of
identical planar formations, as a transverse electric wave in a
rectangular guide should [20, 23]. From these two figures,
the overall electromagnetic field structure of the numerical
simulations was confirmed by the classic resuit.

In Fig. 3, the theoretical and computed electromagnetic fields
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FIG. 2. Electric field of a 3D wave guide: CFL = 1.0;: Tch = 1.0, A =
B=mw=2n

are projected on a Z = (.5 (X-Y cross section) plane to facilitate
a direct comparison. The electric field is traced by solid lines,
and the magnetic field is depicted by dots. First, the analytic
and numerical results are identical within plotting error. This
affinity is preserved for each and every cross-sectional plane
within the computational domain. There is also no detectable
discrepancy between the two solutions of implicit and explicit
fractional-step methods. This observation substantiates the fact
that the present procedures are capable of generating an accurate
numerical simulation with well-posed boundary conditions. As
additional evidence, the orthogonal condition is maintained
between the electric and magnetic fields over the entire cross-
sectional plane.

The instantaneous values of three components of magnetic
field intensity are given in Fig. 4. The magnetic field distribution
is selected from a set of X and Y coordinates over the entire

FIG. 3. Electromagnetic field projection of a 3D wave guide: CFL = 1.0;
Tch=10;A=B =m,w = 2.
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range of Z. Since the numerical results from both implicit and
explicit fractional-step methods are identical to within the same
order of magnitude of truncation error, only a set of numerical
results are included for the purpose of comparison. It is obvious
that the numerical results agree completely with the analytic
expression. Particularly, the wave passes through the computa-
ticnal boundary without any indication of the induced reflection
from the artificial boundary.

The corresponding electric field is presented in Fig. 5. For the
transverse electric wave, the Z component of electric intensity
vanishes identically for both analytic and numerical results.
Again the agreement between analytic and numerical solutions
is excellent. Most importantly, the characteristic-based no-
reflection boundary condition has been demonstrated to be accu-
rate. In fact, this boundary condition on the truncated computa-
tional domain is exact for the investigated phenomenon and is
the best achievable by numerical means.

IV.2. The Oscillaring Electric Dipole

The solution of an electromagnetic wave induced by an oscil-
lating electric dipole was attempted next. The closed form
solution to the time-dependent, three-dimensional Maxwell
equation is also known {20, 23]. However, it is a solution
obtained by a limiting process which contains a singular behav-
ior at the dipole. The leading term singularity of field variables
appears as the inverse cubic power of radial distance from
the dipole,

The numerical simulation of the oscillating electric dipole
was generated by an alternating current vector, J, = sin(2m * )
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FIG. 5. Solutions of electric field component in a 3D wave guide.

located at the center of a 45 X 45 X 45 uniform mesh computa-
tional domain. The calculations were obtained without the ad-
vantage of a coordinate transformation to map the computa-
tional space into a spherical field. The principal axis of the
radiating wave was not aligned with any coordinates of the
Cartesian frame. Therefore, the present characteristic-based no-
refiection condition at best is only an approximation at the outer
edges of the computational domain.

In Fig. 6, the computed Z components of the oscillating
electric field by the explicit and implicit schemes are given.
These isoelectrics were sampled when the first wave front was
exiting the computational domain. The selected 2D projection
contained the dipole in a bisecting plane of the entire space. It
is apparent that the numerical solution of the explicit fractional-
step method has incurred the grid decoupling phenomenon
discovered recently by Ray [24]. However, the solution of
the implicit fractional-step method, generated under identical
conditions as that of the explicit scheme, yielded a physically
meaningful solution. In addition, the distortion of reflecting
waves from artificial boundaries by the characteristic-based
formulation is significantly restrained.

The computed circumferential component of the electric in-
tensity by the implicit fractional-step method and the accompa-
nying analytic results are depicted in Fig. 7. The three-point
upwind differencing formulation demonstrated a robust stability
property even for a phenomenon that contains singular behavior.
Except in the immediately adjacent regions of the dipole, the
agreement between analytic and numerical results is reascnable.
Similar comparisons of the radial component of electric and
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the azmuthal component of magnetic intensities with theoretical
expressions were also obtained. The specific and overall behav-
tor of the total field is nearly identical and is not included here.
The scaling law of the singular dipole behavior 1s known to bz
the inverse cubic power of the distance from the dipole; a linear
mesh spacing refinement may not be effective to improve the
numerical resolution. Therefore, no additional enriched grid
computation was performed.

The peculiar grid decoupling numerical behavior of the ex-
plicit scheme was a recent finding by Ray [24] and was substan-
tiated by the present explicit solution. In the context of the
present study, this numerical oddity is understandable on the
framework of characteristic formulation. From eigenvalue anal-
ysis, all pertaining data are transmitted by a preferred direction.
The single point pulse generated by the dipole lacks a directional
bias that is required by the explicit method in solving the initial
value problem. The directional numerical sweep by the explicit
method creates at least two partial null data strings separated
by the single dipole, Egs. (19} and (20). The implicit algorithm,
on the other hand, has to share information from boundary
to boundary at an advanced time level. The grid decoupling
phenomenon is completely avoided. Therefore, it is surmised
that the grid decoupling may be induced by the deficient initial
condition for the explicit scheme. As a direct support to the
fact that the numerical anomaly is not associated uniquely with
the explicit fractional-step method, calculatons by the unsplit
explicit method also exhibit a similar but different grid decou-
pling pattern. The final substantiation to the present conjuncture
is derived from the following numerical experiments.

The oscillating electric dipoles were again simulated by the
implicit and explicit fractional-step methods, as well as an
unsplit explicit scheme on a 46 X 46 X 46 mesh system. The
periodic electric dipole was then imposed from the analytic
result on two contiguous points in the middle of the computa-
tional domain, instead of a single point current source. The
rest of the simulation conditions remained unaltered. All the
numerical results, either by the implicit or two explicit methods,
are nearly identical and do not contain any numerical patterns of
grid decoupling. The new evidence is sufficient for the present
purpose; however, this unique behavier may warrant additional |
in-depth investigations.

The comparison of computed and analytic azimuthal compo-
nents of magnetic intensity is displayed in Fig. 8. The agreement
of three numerical results and the theory is reasonable. The
lack of numerical resolution is clearly demonstrated in the
transitional region of near and far field, where the gradient of
variable, and, thus, the truncation error reaches its maximum
magnitude. The instantaneous values of magnetic intensity were
selected along a radial ray that aligned with the X coordinate.
There were small deviations in far field solutions along the
radial rays with different azimuthal and meridian angles. How-
ever, these discrepancies were less than the differences between
solutions of the three methods.

In Fig. 9, the comparison of calculated radial components
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FIG. 6. E, contours of a dipole in Z = (.5 plane: J = sin(2z71); Tch = 1.0; CFL = 1.0.

of electric field intensity with analytic results is presented. intensity and theory is depicted in Fig. 10. From the theory,
Again, the only significant difference from theory was observed  this field component has the widest variation among all existing
in the near to far field transition region. The difference between  electromagnetic waves. The unsplit explicit method yielded the
solutions of the three numerical procedures was only a fraction  least discrepancies from the theoretical results over the entire
of 1%. range of r, as a consequence of containing no splitting error.

The comparison of the circumferential component of electric  However, all numerical solutions were generated at a CFL

-
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FIG. 7. Computed electric circumferential component of a dipole.
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FIG. 8. Comparison of magnetic azimuthal components of a dipole.

value of 0.5 to sustain the stable calculations for the unsplit
scheme. At this CFL value, both fractional-step methods were
not operated at the optimal condition for the minimum dissipa-
tive and dispersive errors.

The entire magnetic field results computed by the implicit
fractional-step and the theoretical result are compared side-by-
side in Fig. 11. The instantaneous time exposure was taken
when the second pulse was exiting the computational space.
The traces of magnetic field intensity were constrained to a
series of planar concentric circles perpendicular to the direction
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-0.5000H
E, -0.7500]
-1.0000
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FIG. 9. Comparison of electrical radial components of a dipole,

FIG.10. Comparison of electric circumferential components of a dipole.

of the alternating current point source. Significant departure
from a two-dimensional structure appeared only in the location
adjacent to the singular dipole. This behavior was verified by
the specific and detailed comparison given in Fig, 8. In all, the
numerical simulation has demonstrated a creditable degree of
fidelity to physics.

In Fig. 12, a perspective view of complete electric fields of
the dipole from the computed and the analytic result are pre-
sented. The orderly loops originating from the dipole and
streaks around them indicate a composite field of two predomi-
nant radial and circumferential components. The topology be-
tween the theoretical and numerical results is similar, except
in the corner regions of the computational cube. In these regions,
the one-dimensional characteristic-based no-reflection bound-
ary condition becomes increasingly inaccurate. The intricate
electric field structures in the corner regions are not captured

Theoretical

Computation (Implicity
4= sin (2at) Tch= 2.0 Cll = 1.0

FIG. 11. Comparison of magnetic fields of a dipole.
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FIG. 12. Comparison of electric fields of a dipole.

by the numerical simulation. This observation is true for all
three numerical results using different techniques. From the
detailed comparisons of the electric field, Figs. 9 and 10, the
deviation between numerical and theoretical results is less than
a fraction of 1%. Therefore, the field feature at the corner is
believed to be a secondary structure induced by the numerical
error at the boundary.

Improvement of the numerical accuracy can be achieved
through a coordinate transformation to a general curvilinear
system. In the transformed coordinates, the characteristic data
can always be effectively utilized to construct the exact no-
reflection condition. Near the outer edge of the computational
domain, the coordinates can be mapped to align with the axis
of wave motion [20, 23]. In addition, the grid spacing also can
be controlled to meet any particular scaling law for accurate
numerical results.

V. CONCLUDING REMARKS

Two characteristic-based, fractional-step, implicit, and ex-
plicit methods have been successfully developed for solving
three-dimensional, time-dependent Maxwell equations. Under
controlled conditions, these numerical procedures generated
excellent solutions for a three-dimensional wave guide, in com-
parison with the theoretical result. Reasonable simulations of
an oscillating electric dipole were also obtained. The character-
istic-based no-reflection condition, imposed at the control
surfaces of computational domain, has exhibited a degree of
effectiveness beyond its range of validity. For the present inves-
tigation, the grid decoupling numerical anomaly of the explicit
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schemes has been illustrated as a consequence of ill-posed
initial conditions.

Additional efforts have been planned to develop the formula-
tion on general curvilinear coordinates and to map onto mas-
sively parallel computers.
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